Welcome to TBMT42: Systems Biology, Digital Twins, and AI

Gunnar Cedersund,
Biomedical Engineering (IMT)

- Overview introduction to the three concepts: systems biology, digital twins, and AI (and their interrelations)
- Practical elements and overall structure of the course
- Examinations
- A little bit of inspiration of what this can be used for
- Pedagogical goals and principles

Al is all over the news nowadays

Jonas Ivarsson, professor boten ChatGPT. Hör mer

Nya chat

 enklare fiUPPDATERAD 14 MARS 20؛
Den nya chatboten ${ }^{\prime}$ för alla, kan svara pi Detta har skapat dis blir det blir det enkl: - Vill man fuska så : den varit tidigare, si Göteborgs universit

EU AI Act: first regulation on artificial intelligence

Society Updated: 14-06-2023-14:06 Created: 08-06-2023-11:40

The use of artificial intelligence in the EU will be regulated by the AI Act, the world's first comprehensive Al law. Find out how it will protect you.

Digital twins is used in industry since a long time, and is now returning to biology

Overview of our digital twins

Immunology and the X HiDE consortium

A realistic brain and face Catalyst project

Exercise, yoga and biomechanics

Blood flow and blood pressure, based on advanced MRI

Systems biology is the art of integrating pieces of knowledge into useful models

Mechanistic insights faster
(systems biology)

Making a difference (companies, eHealth)

The limitation of only using AI and machine learning: the three generations of eHealth

eHealth 3.0: hybrid $\mathrm{M}^{4} \&$ digital twins
All types of data, including new data not originally intended

Generated images

Simulation of user-defined scenarios: mechanistic insights \& risks

Systems biology and AI: mechanistic modelling vs
Simulated risk bioinformatics and machine learning

Simulations \& biomarkers

Mif

Mechanistic models

Hybrid digital twins

Modules \& biomarkers

Bioinformatics network models

Theoretical biology/ mechanistic models

Mathematics
\& models
Physics

Bioinformatics

Machine learning and AI

Theory
Data-informed models
Phenomenological models

Main part of the course (4 weeks, $=4$ blocks of knowledge)

Final part of the course (rest of HT1)

The four blocks of material

- Formalisms for model formulation and nonlinear dynamical systems
- Parameter estimation and model uncertainty
- Nonlinear mixed-effects modelling, and applications in drug development and personalized medicine
- Hybrid models, machine learning, and digital twins

Examinations

Turning now to the next part: examinations in

1) Dugga (mini-examination). 6 points per block, i.e 24 points in total. Passed req = 18/24 and at least 2 points in each block.
2) Lab report: one report for all labs. You should answer all questions in the end of the labs
3) In-depth project: oral presentation (ppt or similiar), scripts, and abstract (~ 250 words)

Overview of systems biology, digital twins, AI and our

research group

All these are (former) TB*-

Returning to

 some inspirationstudents! Blood flow and heart, pressures, vol, heart rate patientCasas 2017, 2018

Sensors, Health
Care Records, etc

Liver function, uptake, steatosis \& NASH orsgren 2014, 2017, 2019
Bram neurovascular coupling Lundengärd 2016, Sten 2017, 2020 Fat issue, glucose uptake, insulin resistancél Brönmmark 2010, 2013, Nyman 2014, 2016

Muscle metabolism Cedersund 2006
Beta cell, metabolism, oscillation and insulin secretion Cedersund 2001, Palmér 2014

From mechanistic knowledge to end-usage in 3 steps:

 1) test sub-system 2) integrate 3) use

Mechanistic insights faster
(systems biology)

Making a difference (companies, eHealth)

The story of our original multi-level multi-timescale model

Application 3-4, health conversation and teaching

Application 3-4, health conversation and teaching

Scenario 2:

Low calorie diet + exercise

Comparison of corresponding risk between the two scenarios

Digital Twin DigitalTwinFrontend

Patient Avatars with Metahuman

- Free, easy to use tech for creating custom human avatars
- Accessable through browser, no need for powerful computer
- Add into Unreal Engine, comes fully rigged for animation

Face Scan Mesh to Metahuman

- Face scan -> Geometry -> Conversion -> Body Features

Your Metahuman in the app

- The patient customize their Metahumans, based on the face scan, to make it look like themself
- We import it into the to application
- In the final application, patient can only access themself, data is protected

InfraVis

Weight Adjustment

- Morph body to different weights
- Connected to simulations
- Diet
- Exercise
- Show progress over time on your body

InfraVis

Animations

- Play animations on the avatar
- Show yourself performing different motions
- Work out
- Rehab
- Show potential progress if done correctly
- Goal is to record motion capture with medical professionals
- Stroke rehab exercises

InfraVis

Transparent Mode

- Inspection mode, where you can look closer at organs
- Select organs to get information from back end simulations
- Interface to understand what happens in the body
- Heart during exercise
- Liver fat based on diet

InfraVis

Changing Context

- Allows for different environments
- Contextualize the data that you are looking at
- Exercise at gym
- Medical examination at the hospital

InfraVis

Pixel Streaming

- Pixel Streaming -> WebRTC -> browser or application
- Run avatar program on powerful computer, view and interact in browser or in your phone using a web connection

Digital twin benefits - different perspectives

Quick overview of status Allows for digging deeper Simulations of scenarios Tailored treatments Better communication Use throughout your entire health journey

Better understanding of own health, and why a specific diet is suggested

Integrate all their own data
In charge of their own care Personalized advice from an eHealth coach that follows you throughout life

Big clinical studies: UKBIOBANK, SCAPIS, hospital databases, etc

Mechanistic knowledge, "regular papers"

Sociodemographics, other risk factors
multi-omics, images

EHR, personal sensor data, activity clocks, time-series

Translation from organs-on-a-chip and mice to humans using mathematical models

J Experimental data

Prediction with model

Bergqvist et al, JBC, 2017 Simonsson et al, bioRxiv, 2021

Intracellula
level

This is a basis for a new type of knowledge-driven drug development, potentially saving years and earning billions of SEK per new drug

Scale organ sizes to human proportions in computer model

Bauer et al, Sci Rep, 2017
Casas et al, bioRxiv, 2021

Up until now:

STRATIF-AI - a new 65 MSEK EU project coordinated by us

New vision:

Zurich-Milan Prognostic Calculator for Stroke Surgery, STRATIF-AI project

6 Male

Functional status at admisslion [Karnofsky Performance Status (KPS)]
19

Zurich-Milan Prognostic Calculator

Functional impairment after intracranial tumor surgery

Functional impairment at 3 to 6 months postoperatively

Predicted Probability

With surgery, there is a 9.1% risk that new functional impairment will occur

Predicted Outcome

Based on the Zurich-Milan prognostic calculator, it is unlikely that new functional impairment will occur after surgery

[^0]Summary and long-term vision: a personalized patient-centered interconnected healthcare system

New cells when needed

First donation of cells
birth

All your courses relate to the three pillars of systems biology
Automatic control \& programming
To analyse the data and misdel, and to draw the correct conslusions

Biology \& medicine

To understand the data, the question, and to read articles

See Liftaren's guide to kandidaten:

"Liftarens guide tilikandidaten"

Connected to a growing set of courses in semesters 1-5 (i.e. years 1-3), we are developing:

- Youtube videos
- exercises
which show the connection between that course and what TB ${ }^{1-}$
students at LiU^{2} will do in their B.Sc. Project
You should be the first pilot students, if you started in 2020 However, anyone is welcome to use them, and you can contact Elin Nyman, who can give you access: elin.nyman@liu.se The videos will also be added as a playlist to our youtube-channel

Zoomed-out view of all 5 years of TB

Building-blocks

First way of integrating skills

- first real project

Other ways of integrating skills more real projects, internships, etc

The three layers of knowledge

Example of flipped-classrom result

\Rightarrow Year 1
\Rightarrow Year 1
Normal teaching 45-55\% passed

Normal teaching 45-55\% passed

Year 2-3
Year 2-3
Flipped classroom >90\% passed

Normal teaching
45-55\% passed

Also the good students - who already passed - improved the results

Our goal is to make it possible to study this course in your own pace, way, and from anywhere in the world

2) free education for all te

Massive Open Online Course

[^0]: Refresh the page to predict on a different patient

